
Streaming Terrains
Francis Chang, Wu-chi Feng

Portland State University
Department of Computer Science

{francis, wuchi}@cs.pdx.edu

ABSTRACT
Streaming computer graphics data is challenging because
of the need to retrieve large triangle meshes before any
display can begin. This paper proposes and analyzes the
benefits of borrowing techniques from lossy image
compression to implement a novel technique of
progressive terrain rendering for streaming over a
network. The goal of the work is to provide a quality-
aware framework for 3-D rendering of heightfields.
Keywords: View-dependent progressive mesh,
heightfield compression, graphics, streaming
1. INTRODUCTION

Virtual reality systems [active, croquet, gearth,
wwind, sl] have risen in popularity with readily available
high-speed networking and affordable consumer
computer graphics processing hardware. However, the
deployment of networking hardware has not kept pace
with the increasing quality and complexity of
visualization data. Even with such advances, the
resolution of such visualization can easily consume any
additional gains in bandwidth.

There is a need for techniques and algorithms that are
aware of both network and rendering constraints because
data and viewers are often not co-located. Models should
be transmitted in a quality-aware manner that allows data
to be sent continuously in a compact form that allows
clients to view data with progressively increasing
quality. To maximize the user’s experience, the order in
which data is transmitted should be dictated by the
viewer's local perception.

In this paper, we focus on the streaming delivery of
terrain data for fly-overs. The goals of the system are
two-fold. First, distant terrain details and data that are
outside the viewer's frustum should be transmitted with a
low priority. Second, terrain that is near the viewer
should be downloaded to the viewing client with high
priority. We propose the application of lossy image
compression techniques to represent the height fields for
terrain data, allowing the fly-overs to start with low
latency, while capturing the essence of the terrain being
represented. Using the Grand Canyon terrain data set,

we compare the efficacy of our approach with several
basic graphics streaming engines. Our results show that
we can present the user with a high quality interactive
experience with smaller delay.

In the following section, we describe some of the
related work. In Section 3, we describe our network
model and propose a novel height-field representation and
compression algorithm to address the problem of terrain
streaming.
2. RELATED WORK

Several systems have been implemented for the
streaming of computer graphics data. The networked
computer game Second Life [sl] is a massively
multiplayer online dynamic virtual world that allows
users to explore a large 3 dimensional space, where
players can create and exchange virtual items. Objects are
described using a primitive constructive solid geometry
model. Terrain and map information are sent in 256x256
patches of non-progressive JPEG data. Using the JPEG
patches, rendering is performed with a triangle-splitting
algorithm based on an exponential distance metric.

From the computer graphics field, a significant amount
of work has been done in the field of progressive
meshing. Most of the work in this area focuses on
arbitrary 3-dimensional meshes, as opposed to specific
optimizations for heightfields, which we explore in this
paper. Moreover, the viewer’s perspective is not taken
into account, resulting in suboptimal viewer-independent
streaming algorithms [chen, isenburg, allies].

A network-aware transport protocol has been shown to
significantly improve speed and quality of progressive
streaming in image data by explicitly modelling packet
loss and performing out-of-order data processing [raman].
This approach improves the latency of progressive
refinement; however it does not consider prioritization of
regions of interest nor 3 dimensional geometry.

For streaming terrain, we can use multi-resolution
bitmaps for progressive rendering. [reddy] organizes data
in a quad-tree structure, with each child node representing
a refinement of one-quarter of the space. This approach
takes only the viewers location into account when
streaming, without considering the visual importance of
existing geological features in the data. [tsai] extends this
approach by considering terrain complexity and culling
patches outside the viewer’s frustum, but does not
prioritize information based on viewer distance.

 A similar approach streaming terrain approach divides
the terrain into square tiles, attempting to pre-cache
visible areas around the viewer [pouderoux]. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NOSSDAV, ’07 Urbana, Illinois USA.
Copyright 2007 ACM 978-1-59593-746-9/06/2007…$5.00.

approach tries to minimize computational complexity for
CPU-constrained devices by compiling patches into
display lists which can be quickly re-rendered by
graphics hardware on successive frames.

 [duchaineau] proposes a technique for level of detail
management to simplify terrain geometry for real-time
rendering. ROAM uses triangle decimation to reduce
geometrical complexity by considering the visual impact
of rendering additional vertices.
3. ALGORITHMS

Before we describe our proposed approach, we first
describe some of the basic assumptions we have
regarding the system and network.
3.1 System and Network Assumptions

The basic assumptions we make when modelling our
system are that

- Local storage and computing power are large
relative to network bandwidth.
- The network is reliable and delivers all packets
with minimal latency.

These assumptions are chosen to reflect the goal of
our research – to construct an algorithm that can deliver
a high-quality 3D reconstruction of a terrain over
constrained network infrastructure.

The architectural model we follow is to construct a
single server and client. The server stores all the world
data and sends it to the client in a quality-aware manner.
The client is responsible for rendering the scene and
sending viewer updated information to the server.
3.2 Lossless Rendering

To simulate a lossless terrain-streaming method, we
constructed an adaptation of the ROAM algorithm
[duchaineau]. Normally, this algorithm is used for mesh
simplification for real-time rendering. In this application,
we repurpose the ROAM vertex creation mechanism for
use in the prioritization of data for adaptive network
streaming. This algorithm will serve as the baseline
comparison case for our experimental work.

The ROAM algorithm divides a landscape into square
patches that are represented by progressively refined
triangle meshes, allowing finer details to be “aggregated”
together when network adaptation becomes necessary.

In the coarsest representation, a ROAM patch is
represented by two right angle isosceles triangles. As
higher detail is demanded, a triangle may be split into
two children triangles, introducing an additional vertex
(Figure 1).

This triangle mesh is always constructed in a way to
prevent the formation of T-junctions – visual cracks in the
mesh, formed when two neighbouring triangles are
rendered at incompatible detail levels.

In practice, each ROAM patch is represented in
memory by a binary tree, with each node representing a
triangular area. Each triangle is in turn represented by
two smaller triangles that form the descendents of each
node. This data structure is referred to as a binary triangle
tree (BTT). The BTT is constructed so that travelling
down the branches of the tree represents progressive
refinement of the terrain mesh, and hence, additional
visual detail that can be presented to the user.

In our implementation, there are two BTTs
representing each ROAM patch – one on the server, and
one on the client. Initially, the server’s BTT will be fully
populated with the full terrain geometry, while the client’s
BTT will contain only the coarsest representation. Thus,
given infinite resources, the BTT on the client would
match that of the server.

Data is sent from the server to the client to populate the
client’s BTT - the server constructs a vertex stream to
send to the client, based on the viewer’s location and
orientation, using a distance-variance metric for vertex
prioritization. This is similar to the way standard ROAM
implements its progressive refinement.

In our implementation, the variance of all the child
vertices is divided by the distance of the node from the
viewer to form a score for each vertex in the terrain mesh.
All nodes not yet downloaded are placed in a priority
queue for streaming to the client. These scores are
recalculated per frame to avoid sending late data.

It is important to note that this distance-variance metric
differs from the original paper which uses bounding
volumes to calculate screen-space rendering error. Our
approach enables us to pre-calculate much of the per-
frame node prioritization, as well as simplify the visual-
weighting estimation. We believe that such changes
would be necessary in a practical implementation of
streaming ROAM.
3.3 Lossy Rendering

Our proposed approach to stream terrain data is to
represent map geometry as a collection of 2-dimensional
tiled bitmaps. In this approach, the height-fields that will
be rendered are represented as “image” data and
compressed using JPEG [jpeg]. Thus, the pixel intensity
in the image corresponds to the height at a given location
on our map. Because terrain data is fairly smooth (modulo

Figure 1: The recursive splitting of triangles in a ROAM patch. This example illustrates progressive refinement to add
detail to the upper right-hand corner of the tile. Each vertex represents a rendered height post.

cliffs), we expect that such a representation will
efficiently represent terrain data.

In our implementation, the entire terrain is divided
into 642 square bitmaps and compressed using JPEG
encoding in progressive mode to allow progressive
refinement as data is streamed to the client.

In the simple case, all visible patches are streamed
with equal priority. Patches that are outside the viewer’s
frustum are not downloaded to the client. We refer to
this approach as the jpeg-nopri approach.

In an extension to this algorithm, visible patches are
prioritized with respect to their distance from the viewer
and the size of the compressed patch (Equation 1).

viewerfromdistance

patch ofsizeimportancepatch = (1)

The proximity of the patch to the viewer is used to
determine its visual weight, while the size of the
compressed patch is used as a coarse metric to determine
the patch’s geometric complexity.

The bandwidth from the server is divided among
visible patches in proportion to the score yielded from
Equation 1. This prioritization is very similar to that
presented in [pouderoux]. However, their algorithm
estimates a tile’s viewer independent importance based
on its height, whereas our approach approximates visual
complexity by its compressed data footprint.

The server overhead for implementing this streaming
solution is much smaller than the ROAM-based
algorithms introduced in Section 3.1. This is because the
calculations for determining priority streaming order are
coarser-grained and only require a much simplified
understanding of client state.
4. EXPERIMENTATION

We have implemented our system using an OpenGL
renderer to simulate various fly-throughs over the terrain,
in a 640 x 480 viewport. Example images are shown in
Figure 2 and Figure 3. Our simulations are constructed
on the framework provided by [turner].

The network streaming is completely simulated in a
stand-alone program. The simulation models a network
with zero latency and a bandwidth of 56kbps.

The choice of a 56kbps stems from the idea that terrain
data should only consist of a portion of a true virtual
simulation’s network stream. In a realistic scenario the
data stream would include information such as objects,
buildings, textures and avatars.

This simulation deals only with terrain geometry.
Texture information is not sent. In practice, texture
information can be generated procedurally. In such
approaches, texture is inferred from the terrain geometry
and need not be sent over the network.

The output of the client simulations were captured and
compared to a full-detail rendering of the walkthrough,
using a PSNR metric.

We make the assumption that the viewer is capable of
maintaining a constant 25fps refresh rate. Dividing the
available bandwidth by the frame rate gives us an
allowance of 280 bytes per frame.
4.1 Simulation Dataset

The simulation dataset used in this experiment was the
Grand Canyon dataset from The U.S. Geological Survey
(USGS) with processing by Chad McCabe of Microsoft
Geography Product Unit [usgs]. The subset used for
simulation was based on a 2048x2048 grid with 8-bit
heightposts (Figure 4), an area of roughly 15000 km2.

To test our streaming framework, we designed three
representative walk-throughs to measure the performance
of the various algorithms under different conditions.

The simplest terrain walk-through simulation we use
simply crosses the simulated grid diagonally from corner
to corner. This crossing is accomplished over 2048
rendered frames.

The second walk-through also traverses the terrain
from corner to corner. We augment this walk-through by
pausing in the center of the map to rotate the viewer 360
degrees. This requires the streaming system to cope with
a changing client orientation.

The third walk-through traverses the grid diagonally
while continually panning over the terrain. This is the
most demanding of the three walk-throughs, requiring the
streaming solution to adapt to a constantly changing
viewer location and orientation.

Figure 2: Screenshot of a fly-through of the data Figure 3: Underlying rendered geometry

4.2 Baseline Simulations
The initial baseline was constructed assuming the

client has full knowledge of the entire map geometry.
The simulations were run with a full level of detail. This
represents the ideal case.

To represent the worst-case simulation, the entire
terrain is represented as a 322 grid, (1 KB of data). This
is the coarsest representation our simulation faces
(denoted as plane in Figure 5).

 The theoretical best results for the lossy rendering
algorithm is given by jpeg-full-95 and jpeg-full-100 in
Figure 5, which illustrates a client starting off with the
entire jpeg representation, compressed at quality levels
of 95 and 100, respectively. This study was performed to
determine the quality of the data represented by using a
lossy compression method (JPEG). Our experimental
results show that the maximum quality that a JPEG-
based technique can yield is in the 40-50db range. The
difference between a jpeg compressed terrain at 95 and
100 quality is small, but measurable.

Wheon the terrain is compressed with JPEG at quality
level 95, the result is a 643,414 byte compressed bitmap.
Compressing it with JPEG at 100 quality yields a
1,142,924 byte output, increasing the data size by nearly
a factor of two.

As expected, our progressive streaming simulation
results fall between the two extremes jpeg-95 and plane.
4.3 Simulation Results (Lossless)

The ROAM-based non-lossy streaming algorithm is
illustrated as roam in Figure 5. Our simulation counts
each vertex as 4-bytes of data (1 byte for height, 3 bytes
for XY positional information). This simulation
represents the effect of organizing data in a streaming-
friendly manner, without applying any compression.
Surprisingly, this yields only a marginal improvement in
measured image quality.

For comparison, we have also simulated roammax,

which is the same algorithm, but counts each vertex as
only 1 byte of data. This value was chosen in accordance
with the compression factors given by [alliez].
Surprisingly, this four-fold improvement in compression
results in only a marginal increase in image quality. This
suggests that at this level, much more bandwidth is
needed to improve the quality of the experience rather
than clever management of resources.

The ROAM-based streaming techniques result in
“popping” artifacts – temporal discontinuities formed by
the sudden introduction of a new vertex to the terrain
mesh. These artifacts are not captured by our PSNR
metric, but may prove distracting to the viewer. The
visual impact of these artifacts can be lessened by
introducing new vertices using a geomorphing technique
to smooth the geometric transition between mesh
refinement levels [hoppe].
4.4 Simulation Results (Lossy)

Our algorithm using progressive JPEG patches is
reported by jpeg and jpeg-nopri in Figure 5. We use JPEG
compression with a quality value of 95, to reflect the high
end of JPEG’s useful working range. jpeg-nopri is the
case where all JPEG patches are streamed with equal
priority if they are visible, while jpeg streams data with
network priority given to patches closer to the viewer.

Both by jpeg and jpeg-nopri perform well and are
bounded conservatively between the predicted best and
worst case simulations. Both algorithms significantly out-
perform the non-lossy examples we have implemented.
Although jpeg-nopri can do better than jpeg when the
view frustum mis-predicts the future importance of
patches, we can see that the jpeg algorithm usually gives
better results.

Figure 4: 2048x2048 USGS dataset of the Grand Canyon. The heightfield information is on the left, lighting
information is on the right

0

10

20

30

40

50

60

70

0 500 1000 1500 2000

PS
NR

(dB
)

Frame Number

jpeg-full100-0
jpeg-full95-0
jpeg-0
jpeg-nopri-0
roammax-0
roam-0
plane-0

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

PS
NR

(dB
)

Frame Number

jpeg-full100-1
jpeg-full95-1
jpeg-1
jpeg-nopri-1
roammax-1
roam-1
plane-1

0

10

20

30

40

50

60

70

0 500 1000 1500 2000

PS
NR

(dB
)

Frame Number

jpeg-full100-2
jpeg-full95-2
jpeg-2
jpeg-nopri-2
roammax-2
roam-2
plane-2

Figure 5: PSNR simulation results. Frame number is on the X axis. The PSNR for that frame (dB) is on the Y
axis. The top graph represents a continuous flythrough (0). The middle graph represents a flythrough with a
360˚ pan in the midpoint (1). The bottom graph represents a flythrough with a continuous 360˚ pan (2).

During subjective examination of the rendered output,
JPEG “ringing” artifacts are not easily observed – the
quality increase in the streaming simulation tends to be
fast enough that small inaccuracies are removed
before they become too close to the viewer. However,
blocking artifacts from neighbouring patches being
rendered at different detail levels can be distracting.

The most surprising result is that the
complexity/distance prioritized streaming technique
performs only marginally better than streaming based
solely on visibility. This implies that a high compression
rate is more important to the visual quality of the
simulation than intelligent prioritization of data. This
phenomenon will become more pronounced with larger
network latency, due to a less accurate prediction by the
prioritization mechanism.

As with the ROAM-based progressive streaming
techniques, there are temporal artifacts formed by the
sudden progressive refinement of a terrain patch. These
problems, as with the ROAM-based algorithms, can be
solved by applying a geomorphing technique on newly-
refined patches to improve frame-to-frame coherence.
4.5 Future Work

In future work, we plan to examine the benefits of
using the JPEG2k compression. JPEG2k has an
important property that at low bit-rates, it is able to yield
a superior image. We predict that this will result in an
improvement in the “ramp up” time for our lossy
rendering algorithm.

We will also relax the assumptions used in the design
of our algorithm. Currently, we do not perform any
geometric simplification between the streamed dataset
and the video card. We hope to extend our work to take
advantage of LOD algorithms such as ROAM, with
explicit understanding of the representation of the data
being streamed. At the network layer, a stronger model
of packet loss and out-of-order processing can be used,
borrowing from ideas in [raman] to further optimize use
of the network.

Additional streaming heuristics, such as viewer
velocity can also be taken into account to better predict
the future relevance of data.
5. CONCLUSION

We have proposed a lossy streaming architecture for
the representation of 2-dimensional terrain computer
graphics data. This approach has been demonstrated to
yield promising results for quality client playback of
streaming terrain data. This technique has not yet
reached the point of deployability, but our results show
the room for potential gains in employing lossy
streaming techniques in this domain.

Our experimental results demonstrate the importance
of achieving a high data compression ratio in order to
provide high-quality streaming terrain. This further
underscores the importance of adopting lossy encoding

techniques, which can yield much higher compression
rates than the non-lossy approaches.
6. ACKNOWLEDGEMENTS
 This material is based upon work supported by the
National Science Foundation under Grant No. NSF CNS-
0130344. We would like to thank Cory Ondrejka at
Linden Lab for discussing their implementation with us,
and the anonymous reviewers of an earlier version of this
paper for their suggestions and feedback.
7. REFERENCES
[alliez] P. Alliez, C. Gotsman. Recent Advances in Compression

of 3D Meshes. In Proc. of the Symp. on Multiresolution in
Geometric Modeling (Sept. 2003).

[active] Active Worlds, http://www.activeworlds.com/
[chen] B. Chen, T. Nishita. Multiresolution Streaming Mesh

with Shape Preserving and QoS-like Controlling. In Proc. of
ACM 2002 International Conference on 3D Web Technology
(Feb. 2002)

[croquet] Croquet Project http://www.opencroquet.org/
[duchaineau] M. Duchaineau, M. Wolinsky, D. Sigeti, M.

Miller, C. Aldrich, M. Mineev-Weinstein. ROAMing Terrain:
Real-time Optimally Adapting Meshes, UCRL-JC-127870

[hoppe] H. Hoppe. Progressive meshes. In ACM SIGGRAPH 96
(Aug. 1996).

[isenburg] M. Isenburg, P. Lindstrom. Streaming Meshes. LLNL
tech. report UCRL-TR-211608, April 2005.

[jpeg] Independent JPEG Group, http://www.ijg.org/
[gearth] Google Earth, http://earth.google.com/
[pouderoux] J. Pouderoux, J. Marvie. Adaptive Streaming and

Rendering of Large Terrains using Strip Masks. In
Proceedings of ACM GRAPHITE 2005 (Nov. 2005)

[wwind] NASA World Wind, worldwind.arc.nasa.gov
[raman] S. Raman, H. Balakrishnan, M. Srinivasan. An Image

Transport Protocol for the Internet. In Proc. Int’l. Conf. on
Network Protocols (Nov. 2000).

[reddy] M. Reddy, Y. Leclerc, L. Iverson, N. Bletter.
TerraVision II: Visualizing Massive Terrain Databases in
VRML. In IEEE Computer Graphics and Applications, vol.
19, no. 2, pp. 30-38, 1999.

[sl] Second Life, www.secondlife.com
[tsai] F. Tsai, H.-S. Liu, J.K. Liu, K.H. Hsiao. Progressive

Streaming and Rendering of 3D Terrain for Cyber City
Visualization. In Proc. 27th Asian Conference on Remote
Sensing (Oct. 2006).

[turner] B. Turner. Real-Time Dynamic Level of Detail Terrain
Rendering with ROAM.

 http://www.gamasutra.com/features/20000403/turner_01.htm
[usgs] USGS and Chad McCabe. Grand Canyon Terrain.

www.cc.gatech.edu/projects/large_models/gcanyon.html
[yang] S. Yang, C.S. Kim, C.-C. Jay Kuo, View-dependent

Progressive Mesh Coding for Graphic Streaming. In Proc.
SPIE Vol. 4518, p. 154-165, Multimedia Systems and
Applications IV (Nov. 2001)

