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ABSTRACT 
Streaming computer graphics data is challenging because 
of the need to retrieve large triangle meshes before any 
display can begin.  This paper proposes and analyzes the 
benefits of borrowing techniques from lossy image 
compression to implement a novel technique of 
progressive terrain rendering for streaming over a 
network. The goal of the work is to provide a quality-
aware framework for 3-D rendering of heightfields. 
Keywords: View-dependent progressive mesh, 
heightfield compression, graphics, streaming 
1. INTRODUCTION 

Virtual reality systems [active, croquet, gearth, 
wwind, sl] have risen in popularity with readily available 
high-speed networking and affordable consumer 
computer graphics processing hardware. However, the 
deployment of networking hardware has not kept pace 
with the increasing quality and complexity of 
visualization data.  Even with such advances, the 
resolution of such visualization can easily consume any 
additional gains in bandwidth. 

There is a need for techniques and algorithms that are 
aware of both network and rendering constraints because 
data and viewers are often not co-located. Models should 
be transmitted in a quality-aware manner that allows data 
to be sent continuously in a compact form that allows 
clients to view data with progressively increasing 
quality.  To maximize the user’s experience, the order in 
which data is transmitted should be dictated by the 
viewer's local perception.  

In this paper, we focus on the streaming delivery of 
terrain data for fly-overs.  The goals of the system are 
two-fold.  First, distant terrain details and data that are 
outside the viewer's frustum should be transmitted with a 
low priority. Second, terrain that is near the viewer 
should be downloaded to the viewing client with high 
priority.  We propose the application of lossy image 
compression techniques to represent the height fields for 
terrain data, allowing the fly-overs to start with low 
latency, while capturing the essence of the terrain being 
represented.  Using the Grand Canyon terrain data set, 

we compare the efficacy of our approach with several 
basic graphics streaming engines.  Our results show that 
we can present the user with a high quality interactive 
experience with smaller delay.  

In the following section, we describe some of the 
related work.  In Section 3, we describe our network 
model and propose a novel height-field representation and 
compression algorithm to address the problem of terrain 
streaming. 
2. RELATED WORK 

Several systems have been implemented for the 
streaming of computer graphics data.  The networked 
computer game Second Life [sl] is a massively 
multiplayer online dynamic virtual world that allows 
users to explore a large 3 dimensional space, where 
players can create and exchange virtual items. Objects are 
described using a primitive constructive solid geometry 
model. Terrain and map information are sent in 256x256 
patches of non-progressive JPEG data. Using the JPEG 
patches, rendering is performed with a triangle-splitting 
algorithm based on an exponential distance metric.  

From the computer graphics field, a significant amount 
of work has been done in the field of progressive 
meshing. Most of the work in this area focuses on 
arbitrary 3-dimensional meshes, as opposed to specific 
optimizations for heightfields, which we explore in this 
paper. Moreover, the viewer’s perspective is not taken 
into account, resulting in suboptimal viewer-independent 
streaming algorithms [chen, isenburg, allies]. 

A network-aware transport protocol has been shown to 
significantly improve speed and quality of progressive 
streaming in image data by explicitly modelling packet 
loss and performing out-of-order data processing [raman]. 
This approach improves the latency of progressive 
refinement; however it does not consider prioritization of 
regions of interest nor 3 dimensional geometry.   

For streaming terrain, we can use multi-resolution 
bitmaps for progressive rendering.  [reddy] organizes data 
in a quad-tree structure, with each child node representing 
a refinement of one-quarter of the space. This approach 
takes only the viewers location into account when 
streaming, without considering the visual importance of 
existing geological features in the data. [tsai] extends this 
approach by considering terrain complexity and culling 
patches outside the viewer’s frustum, but does not 
prioritize information based on viewer distance. 

 A similar approach streaming terrain approach divides 
the terrain into square tiles, attempting to pre-cache 
visible areas around the viewer [pouderoux]. This 
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approach tries to minimize computational complexity for 
CPU-constrained devices by compiling patches into 
display lists which can be quickly re-rendered by 
graphics hardware on successive frames. 

 [duchaineau] proposes a technique for level of detail 
management to simplify terrain geometry for real-time 
rendering. ROAM uses triangle decimation to reduce 
geometrical complexity by considering the visual impact 
of rendering additional vertices. 
3. ALGORITHMS 

Before we describe our proposed approach, we first 
describe some of the basic assumptions we have 
regarding the system and network. 
3.1 System and Network Assumptions 

The basic assumptions we make when modelling our 
system are that 

- Local storage and computing power are large 
relative to network bandwidth.   
- The network is reliable and delivers all packets 
with minimal  latency. 

These assumptions are chosen to reflect the goal of 
our research – to construct an algorithm that can deliver 
a high-quality 3D reconstruction of a terrain over 
constrained network infrastructure. 

The architectural model we follow is to construct a 
single server and client. The server stores all the world 
data and sends it to the client in a quality-aware manner. 
The client is responsible for rendering the scene and 
sending viewer updated information to the server. 
3.2 Lossless Rendering 

To simulate a lossless terrain-streaming method, we 
constructed an adaptation of the ROAM algorithm 
[duchaineau]. Normally, this algorithm is used for mesh 
simplification for real-time rendering. In this application, 
we repurpose the ROAM vertex creation mechanism for 
use in the prioritization of data for adaptive network 
streaming.  This algorithm will serve as the baseline 
comparison case for our experimental work. 

The ROAM algorithm divides a landscape into square 
patches that are represented by progressively refined 
triangle meshes, allowing finer details to be “aggregated” 
together when network adaptation becomes necessary. 

In the coarsest representation, a ROAM patch is 
represented by two right angle isosceles triangles. As 
higher detail is demanded, a triangle may be split into 
two children triangles, introducing an additional vertex 
(Figure 1). 

This triangle mesh is always constructed in a way to 
prevent the formation of T-junctions – visual cracks in the 
mesh, formed when two neighbouring triangles are 
rendered at incompatible detail levels. 

In practice, each ROAM patch is represented in 
memory by a binary tree, with each node representing a 
triangular area.  Each triangle is in turn represented by 
two smaller triangles that form the descendents of each 
node. This data structure is referred to as a binary triangle 
tree (BTT). The BTT is constructed so that travelling 
down the branches of the tree represents progressive 
refinement of the terrain mesh, and hence, additional 
visual detail that can be presented to the user. 

In our implementation, there are two BTTs 
representing each ROAM patch – one on the server, and 
one on the client. Initially, the server’s BTT will be fully 
populated with the full terrain geometry, while the client’s 
BTT will contain only the coarsest representation. Thus, 
given infinite resources, the BTT on the client would 
match that of the server. 

Data is sent from the server to the client to populate the 
client’s BTT - the server constructs a vertex stream to 
send to the client, based on the viewer’s location and 
orientation, using a distance-variance metric for vertex 
prioritization. This is similar to the way standard ROAM 
implements its progressive refinement. 

In our implementation, the variance of all the child 
vertices is divided by the distance of the node from the 
viewer to form a score for each vertex in the terrain mesh. 
All nodes not yet downloaded are placed in a priority 
queue for streaming to the client. These scores are 
recalculated per frame to avoid sending late data. 

It is important to note that this distance-variance metric 
differs from the original paper which uses bounding 
volumes to calculate screen-space rendering error. Our 
approach enables us to pre-calculate much of the per-
frame node prioritization, as well as simplify the visual-
weighting estimation.  We believe that such changes 
would be necessary in a practical implementation of 
streaming ROAM. 
3.3 Lossy Rendering 

Our proposed approach to stream terrain data is to 
represent map geometry as a collection of 2-dimensional 
tiled bitmaps.  In this approach, the height-fields that will 
be rendered are represented as “image” data and 
compressed using JPEG [jpeg].  Thus, the pixel intensity 
in the image corresponds to the height at a given location 
on our map. Because terrain data is fairly smooth (modulo 

Figure 1:  The recursive splitting of triangles in a ROAM patch. This example illustrates progressive refinement to add 
detail to the upper right-hand corner of the tile. Each vertex represents a rendered height post. 



cliffs), we expect that such a representation will 
efficiently represent terrain data. 

In our implementation, the entire terrain is divided 
into 642 square bitmaps and compressed using JPEG 
encoding in progressive mode to allow progressive 
refinement as data is streamed to the client.  

In the simple case, all visible patches are streamed 
with equal priority. Patches that are outside the viewer’s 
frustum are not downloaded to the client.  We refer to 
this approach as the jpeg-nopri approach. 

In an extension to this algorithm, visible patches are 
prioritized with respect to their distance from the viewer 
and the size of the compressed patch (Equation 1). 

 
viewerfromdistance

patch ofsizeimportancepatch = (1) 

The proximity of the patch to the viewer is used to 
determine its visual weight, while the size of the 
compressed patch is used as a coarse metric to determine 
the patch’s geometric complexity. 

The bandwidth from the server is divided among 
visible patches in proportion to the score yielded from 
Equation 1.  This prioritization is very similar to that 
presented in [pouderoux]. However, their algorithm 
estimates a tile’s viewer independent importance based 
on its height, whereas our approach approximates visual 
complexity by its compressed data footprint. 

The server overhead for implementing this streaming 
solution is much smaller than the ROAM-based 
algorithms introduced in Section 3.1. This is because the 
calculations for determining priority streaming order are 
coarser-grained and only require a much simplified 
understanding of client state. 
4. EXPERIMENTATION 

We have implemented our system using an OpenGL 
renderer to simulate various fly-throughs over the terrain, 
in a 640 x 480 viewport.  Example images are shown in 
Figure 2 and Figure 3. Our simulations are constructed 
on the framework provided by [turner]. 

The network streaming is completely simulated in a 
stand-alone program. The simulation models a network 
with zero latency and a bandwidth of 56kbps. 

The choice of a 56kbps stems from the idea that terrain 
data should only consist of a portion of a true virtual 
simulation’s network stream. In a realistic scenario the 
data stream would include information such as objects, 
buildings, textures and avatars.  

This simulation deals only with terrain geometry. 
Texture information is not sent. In practice, texture 
information can be generated procedurally.  In such 
approaches, texture is inferred from the terrain geometry 
and need not be sent over the network. 

The output of the client simulations were captured and 
compared to a full-detail rendering of the walkthrough, 
using a PSNR metric.  

We make the assumption that the viewer is capable of 
maintaining a constant 25fps refresh rate. Dividing the 
available bandwidth by the frame rate gives us an 
allowance of 280 bytes per frame. 
4.1 Simulation Dataset 

The simulation dataset used in this experiment was the 
Grand Canyon dataset from The U.S. Geological Survey 
(USGS) with processing by Chad McCabe of Microsoft 
Geography Product Unit [usgs]. The subset used for 
simulation was based on a 2048x2048 grid with 8-bit 
heightposts (Figure 4), an area of  roughly 15000 km2.

To test our streaming framework, we designed three 
representative walk-throughs to measure the performance 
of the various algorithms under different conditions. 

The simplest terrain walk-through simulation we use 
simply crosses the simulated grid diagonally from corner 
to corner.  This crossing is accomplished over 2048 
rendered frames. 

The second walk-through also traverses the terrain 
from corner to corner.  We augment this walk-through by 
pausing in the center of the map to rotate the viewer 360 
degrees.  This requires the streaming system to cope with 
a changing client orientation. 

The third walk-through traverses the grid diagonally 
while continually panning over the terrain.  This is the 
most demanding of the three walk-throughs, requiring the  
streaming solution to adapt to a constantly changing 
viewer location and orientation. 

Figure 2: Screenshot of a fly-through of the data  Figure 3: Underlying rendered geometry 



4.2 Baseline Simulations 
The initial baseline was constructed assuming the 

client has full knowledge of the entire map geometry.   
The simulations were run with a full level of detail. This 
represents the ideal case. 

To represent the worst-case simulation, the entire 
terrain is represented as a 322 grid, (1 KB of data). This 
is the coarsest representation our simulation faces 
(denoted as plane in Figure 5). 

 The theoretical best results for the lossy rendering 
algorithm is given by jpeg-full-95 and jpeg-full-100 in 
Figure 5, which illustrates a client starting off with the 
entire jpeg representation, compressed at quality levels 
of 95 and 100, respectively. This study was performed to 
determine the quality of the data represented by using a 
lossy compression method (JPEG). Our experimental 
results show that the maximum quality that a JPEG-
based technique can yield is in the 40-50db range. The 
difference between a jpeg compressed terrain at 95 and 
100 quality is small, but measurable. 

Wheon the terrain is compressed with JPEG at quality 
level 95, the result is a 643,414 byte compressed bitmap. 
Compressing it with JPEG at 100 quality yields a 
1,142,924 byte output, increasing the data size by nearly 
a factor of two. 

As expected, our progressive streaming simulation 
results fall between the two extremes  jpeg-95 and plane.
4.3 Simulation Results (Lossless) 

The ROAM-based non-lossy streaming algorithm is 
illustrated as roam in Figure 5. Our simulation counts 
each vertex as 4-bytes of data (1 byte for height, 3 bytes 
for XY positional information). This simulation 
represents the effect of organizing data in a streaming-
friendly manner, without applying any compression.  
Surprisingly, this yields only a marginal improvement in 
measured image quality. 

 
For comparison, we have also simulated roammax,

which is the same algorithm, but counts each vertex as 
only 1 byte of data.  This value was chosen in accordance 
with the compression factors given by [alliez]. 
Surprisingly, this four-fold improvement in compression 
results in only a marginal increase in image quality. This 
suggests that at this level, much more bandwidth is 
needed to improve the quality of the experience rather 
than clever management of resources. 

The ROAM-based streaming techniques result in 
“popping” artifacts – temporal discontinuities formed by 
the sudden introduction of a new vertex to the terrain 
mesh. These artifacts are not captured by our PSNR 
metric, but may prove distracting to the viewer. The 
visual impact of these artifacts can be lessened by 
introducing new vertices using a geomorphing technique 
to smooth the geometric transition between mesh 
refinement levels [hoppe].  
4.4 Simulation Results (Lossy) 

Our algorithm using progressive JPEG patches is 
reported by jpeg and jpeg-nopri in Figure 5. We use JPEG 
compression with a quality value of 95, to reflect the high 
end of JPEG’s useful working range. jpeg-nopri is the 
case where all JPEG patches are streamed with equal 
priority if they are visible, while jpeg streams data with 
network priority given to patches closer to the viewer. 

Both by jpeg and jpeg-nopri perform well and are 
bounded conservatively between the predicted best and 
worst case simulations. Both algorithms significantly out-
perform the non-lossy examples we have implemented. 
Although jpeg-nopri can do better than jpeg when the 
view frustum mis-predicts the future importance of 
patches, we can see that the jpeg algorithm usually gives 
better results. 

Figure 4:  2048x2048 USGS dataset of the Grand Canyon. The heightfield information is on the left, lighting 
information is on the right 
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During subjective examination of the rendered output, 
JPEG “ringing” artifacts are not easily observed – the 
quality increase in the streaming simulation tends to be 
fast  enough that  small  inaccuracies  are removed  
before they become too close to the viewer. However, 
blocking artifacts from neighbouring patches being 
rendered at different detail levels can be distracting.  

The most surprising result is that the 
complexity/distance prioritized streaming technique 
performs only marginally better than streaming based 
solely on visibility. This implies that a high compression 
rate is more important to the visual quality of the 
simulation than intelligent prioritization of data. This 
phenomenon will become more pronounced with larger 
network latency, due to a less accurate prediction by the 
prioritization mechanism.   

As with the ROAM-based progressive streaming 
techniques, there are temporal artifacts formed by the 
sudden progressive refinement of a terrain patch. These 
problems, as with the ROAM-based algorithms, can be 
solved by applying a geomorphing technique on newly-
refined patches to improve frame-to-frame coherence. 
4.5 Future Work 

In future work, we plan to examine the benefits of 
using the JPEG2k compression. JPEG2k has an 
important property that at low bit-rates, it is able to yield 
a superior image. We predict that this will result in an 
improvement in the “ramp up” time for our lossy 
rendering algorithm. 

We will also relax the assumptions used in the design 
of our algorithm. Currently, we do not perform any 
geometric simplification between the streamed dataset 
and the video card. We hope to extend our work to take 
advantage of LOD algorithms such as ROAM, with 
explicit understanding of the representation of the data 
being streamed. At the network layer, a stronger model 
of packet loss and out-of-order processing can be used, 
borrowing from ideas in [raman] to further optimize use 
of the network. 

Additional streaming heuristics, such as viewer 
velocity can also be taken into account to better predict 
the future relevance of data. 
5. CONCLUSION 

We have proposed a lossy streaming architecture for 
the representation of 2-dimensional terrain computer 
graphics data.  This approach has been demonstrated to 
yield promising results for quality client playback of 
streaming terrain data. This technique has not yet 
reached the point of deployability, but our results show 
the room for potential gains in employing lossy 
streaming techniques in this domain. 

Our experimental results demonstrate the importance 
of achieving a high data compression ratio in order to 
provide high-quality streaming terrain. This further 
underscores the importance of adopting lossy encoding 

techniques, which can yield much higher compression 
rates than the non-lossy approaches. 
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